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SUMMARY 
 

Reliability Analysis has become a collection of graphical and mathematical tools designed to model and predict risks 
associated with deliverable products or services relative to their overall purpose.  Such tools vary in sophistication and 
application, but they generally share a common approach, that being to determine cause and effects between simple events 
and complex outcomes. This paper will focus on one of those tools and the methods supporting it called Fault Tree Analysis. 
 
INTRODUCTION 

 
To perform a fault tree analysis, one determines some outcome or time based mission that must succeed with very high 

reliability that is the probability of failure must be very low.  Such missions are often so critical, that one would really prefer 
to say that failure is impossible rather than highly improbable, but such perfectly fail safe thinking can never be assured with 
100% confidence.  Therefore we content ourselves with building models, that themselves are conservative in structure, and 
can show that the risk of failure is so low that one cannot imagine it occurring. 
 
MODELING RELIABILITY 

 
Fault Tree Analysis is directly related with classical probability theory. In its essence, it is a fairly simple concept.  One 

builds simple boolean relationships among various events.  At the core, relationships fall mostly into the following two 
camps, namely: 
 

1. Event A and event B will cause event C.  
2. Event D or event E will cause event F. 
 
An experienced analyst will probably take issue with the above simplicity, and for good reason, but most of the 

additional complexity of a fault tree still has the above two classifications in mind – so for the time being we will stick with 
that.  

Looking at life from an AND or OR world view, a tree structure becomes an obvious way to display a succession of 
failure paths.  If C & F can cause yet some other event to fail, one could imagine a hierarchy of failure paths that lead us from 
very basic events to more complex ones.  After tracing through all such relationships, one could build a tree (albeit it is 
upside down), where the ends of is branches represent simple components with known failure rates and its main trunk 
represents the top event which we demand a nearly impossibly low probability of failure. 

To take this from the abstract to the concrete, suppose we are considering 
entrusting the safety of our three year old daughter to a tricycle.  We certainly 
want to minimize the risk of her getting hurt, and to protect her from the risk of 
the tricycle failing in a way that could cause her to crash.  To use a fault tree 
model, we must first identify all components on the tricycle that if failed, could 
contribute to a crash. 

Table 1 show a list of such components, along with ficticous failure rates 
associated with each.  We will assume that the parts fail according to an 
exponential distribution using the tabled rates, and that all components are 
mutually independent.   



Table 1 
Tricycle Components Affecting Operation Reliability 

Component 
Failure 
Rate Description 

XFRAME 1.11E-03 FRAME FAILS STRUCTRUALLY 
XLGRIP 1.11E-02 LEFT GRIP DELAMINATES 
XRGRIP 1.11E-02 RIGHT GRIP DELAMINATES 
XSEAT1 1.11E-02 SEAT MATERIAL BREAKS 
XCLAMP 1.11E-01 CLAMP MECHANISM FAILS 
XCBOLT 1.11E-01 STEERING CLAMP BOLT FAILS 
XCNUT 1.11E-02 STEERING CLAMP NUT HAS INSUFFICIENT CRIMP 
XFDLM 1.11E-02 FRONT WHEEL DELAMINATION 
XPBLT1 1.11E-01 SEAT TO POST BOLT 1 FAILS 
XPNUT1 1.11E-01 SEAT TO POST NUT 1 HAS INSUFFICENT CRIMP 
XPBLT2 1.11E-01 SEAT TO POST BOLT 2 FAILS 
XPNUT2 1.11E-01 SEAT TO POST NUT 2 HAS INSUFFICIENT CRIMP 
XLDLM 1.11E-03 LEFT REAR WHEEL DELAMINATION 
XRDLM 1.11E-03 RIGHT  REAR WHEEL DELAMINATION 
XHUB1 1.11E-02 LEFT REAR HUB HAS INSUFFICIENT CRIMP 
XRAXL 1.11E-01 REAR AXLE FAILS 
XHUB2 1.11E-02 RIGHT REAR HUB HAS INSUFFICIENT CRIMP 
XFBLT1 1.11E-02 POST TO FRAME BOLT 1 FAILS 
XFNUT1 1.11E-02 POST TO FRAME NUT 1 HAS INSUFFICIENT CRIMP 
XFBLT2 1.11E-02 POST TO FRAME BOLT 2 FAILES 
XFNUT2 1.11E-02 POST TO FRAME NUT 2 HAS INSUFFICIENT CRIMP 
XFAXL 1.11E-04 FRONT AXLE BREAKS 
XFLNUT 1.11E-02 FRONT LEFT NUT HAS INSSUFICIENT CRIMP 
XFRNUT 1.11E-02 FRONT RIGHT NUT HAS INSUFFICIENT CRIMP 
XFDELM 1.11E-05 FRONT WHEEL DELAMINTES 

Note: All failure rates are ficticous and are included here only to demonstrate fault tree analysis techniques. 
 

As a second step, we will create cause and effect conditions that relate failure of these components with definable events. 
These events will in turn be combined with other cause and effect relationships that ultimately find their way to the top event, 
that being a crash of the tricycle.  Table 2 shows such cause and effect relationships.  Boolean operations are shown as either  
AND or OR  .  These logical conditions are generally called “gates”.  The gate name is defined on the leftmost column.  It 
may be used repeatedly in any of the child columns.  This then defines relationship among gates and components that define 
the propagation of potential failure. 



 
Table 2 

Cause & Effect Relationships Defining the Fault Tree 
Parent Description Gate Child 1 Child 2 Child 3 Child 4 
TOP TRICYCLE CRASHES IN SERVICE OR STEER WHEEL SEAT XFRAME
WHEEL WHEEL FAILURE OR FRONT BACK     

BACK 

EXACTLY ONE REAR  WHEEL 
FAILS CAUSING REAR FRAME TO 
HIT THE GROUND AND TWIST XOR LEFT RIGHT     

GRIPS GRIPS DELAMINATE AND XLGRIP XRGRIP     

SEAT 
SEAT FAILS TO SUPPORT 
OPERATOR OR XSEAT1 POST FRAME   

STEER 
STEERING FAILS OR CONTROL IS 
LOST BY OPERATOR OR CLAMP GRIPS     

CLAMP 

CLAMPING ASSEMBLY ALLOWS 
STEERING MECHANISM TO 
LOOSEN OR FAST XCLAMP     

FAST STEERING FASTENERS FAIL OR XCBOLT XCNUT     

FRONT 

FRONT WHEEL FAILS SO AS TO 
LOSE SUPPORT OF FORWARD 
FRAME OR FASSM XFDLM     

POST 
SEAT TO POST ATTACHMENT 
FAILS AND POST1 POST2     

POST1 
SEAT TO POST FASTENER 
ASSEMBLY 1 FAILS OR XPBLT1 XPNUT1     

POST2 
SEAT TO POST FASTENER  
ASSEMBLY 2 FAILS OR XPBLT2 XPNUT2     

LEFT 

WHEEL FAILS CAUSING LEFT 
REAR FRAME TO HIT THE 
GROUND OR LASSM XLDLM     

LASSM 
LEFT REAR WHEEL ASSEMBLY 
FAILS AND XHUB1 XRAXL     

RIGHT 

WHEEL FAILS CAUSING THE 
RIGHT REAR FRAME TO HIT 
GROUND OR XRDLM RASSM     

RASSM 
RIGHT REAR WHEEL ASSEMBLY 
FAILS AND XHUB2 XRAXL     

FRAME 
POST TO FRAME ATTACHMENT 
FAILS AND FRAME1 FRAME2     

FRAME1 
POST TO FRAME ASSEMBLY 1 
FAILS OR XFBLT1 XFNUT1     

FRAME2 
POST TO FRAME ASSEMBLY 2 
FAILS OR XFBLT2 XFNUT2     

FASSM FRONT AXLE FAILS OR XFAXL XFLNUT XFRNUT   
Note that by convention, components are indicated in the event name by the name with “X”. In addition,  “Z” is often used 
when the designation is preliminary.  
 

By defining the possible cause and effect relationships, reliability engineers can model failure paths from product 
components to mission failure.  Table 2 does a good job documenting all Boolean relationships, but fails to yield a visual 
sense of the failure paths.  This can be accomplished (generally through software) by using the relationships in table 2 to 
create an inverted tree structure with the mission even at the top, and the components at the bottom.  Each event connecting 
the bottom with the top are displayed through connecting branches. Figures 1illustrates the resulting fault tree generated by 
the relationships in table 2. 
 



Figure 1 
Cause & Effect Relationships Illustrated as a Fault Tree 

 
 
 
 
 
 
 
 
 
 
 
 
Boolean operations are designated as * indicating an AND condition and + indicating an OR condition.  These logical 
conditions are generally called “gates”  Other symbols are used for more complex gates, such as the exclusive OR gate 
shown under node” BACK”.. 
 

The display in figure 1 greatly improves the visibility of failure paths, although it runs the risk of getting very busy as the 
tree increases in size and complexity. Various conventions exist to improve the clarity, all of which require a series of 
coordinated pages to make the display useful.  The above “stick figure” graphical approach is also typically replaced with 
larger boxes to allow the inclusion of the event descriptions.  At this point we generally call each of these boxes “nodes”, 
since that term fits the tree structure well. The node called “TOP” on this tree corresponds to the event of the tricycle crashing 
while in use. 

In addition to the obvious benefit to clarity, it is useful to break the tree into segments or branches. This is especially 
useful if the branch selected is self contained, meaning that no nodes in that branch are found anywhere else in the tree.  Such 
“independent” branches are also probabilistically independent from the rest of the tree, and it becomes meaningful to 
calculate the reliability using the top of that branch as a top event of its own.  This branch typically has a useful interpretation 
to the reliability of the system.   We will also see that there is a very practical benefit that we will glean after we discuss the 
next topic concerning failure paths. 
 
FAILURE PATHS AND MIN CUT SETS 
 

Our next step will be to determine paths in the fault tree that lead to mission failure.  Conceptually this is fairly straight 
forward.  One must identify which set of components that, if fail simultaneously, drives failure to the top of the tree. One 
method to accomplish this is to flag every combination of all bottom events as failed, and check each such combination (or 
set) for mission failure.  Those sets that resulted in the TOP event failing are called “cuts”.  A collection of different cuts is 
called a “cut set”.  We might be interested in the set of all possible cuts. This would determine all possible failure scenarios, 
however there are a few complexities. First, it does not make sense, and in fact causes some trouble, to include a cut in a 
cutest if it has a subset which is also a cut.  In other words, if [X1, X2] is a valid cut, then so is [X1,X2,X3]. But including X3 
brings nothing to the table since it is not necessary to fail the mission.  Furthermore, keeping such supersets takes extra 
computer time and memory (which we will find is more damaging than one might imagine), but it also complicates the 
probability calculations.  Consequently, we will seek to eliminate such supersets.  Algorithms to eliminate supersets get a bit 
involved, and we will not entertain them here, but suffice it to say that when an exhaustive set of cuts have been found, and 
all their supersets eliminated, the resulting cutest is called the “min cut set”.   Table 3 shows the min cut set for our tricycle 
application. 

 



 
Table3 

Min Cut Set for Tricycle Application 

 
Twenty-one cuts comprise the min cut set.  Each has its probability of failure shown under the 
“mission” column, along with the importance of the cut determined through a ranking of the 
mission failure probabilities. 

 
Using the min cut set shown in table 3, we have a means to calculate the mission unreliability, which is the probability 

that a crash occurs. The procedure to do this rests on very basic probability theory.  The min cut set shown in table 3 can be 
thought of as a simplification of the fault tree.  The probability that at least one such cut fails (mission unreliability) can be 
represented as a logical OR for all 21 cuts.  The probability that any given cut occurs is the event that all of its components 
fail.  Therefore the min cut set itself is an equivalent fault tree (probabilistically speaking) to the original, consisting of a 
single OR gate and as many AND gates as cuts in the set. 
 
CALCULATING THE RELIABILITY 

 
The unreliability (1- reliability) is the probability of the top event failing.  Calculating this probability is another 

straightforward task that also can get to be unwieldy for even medium sized trees.  But in theory, we can do the following: 
 

Given any two events, say A & B, the probability of A or B occurring is: 
 
(1) P[A or B] = P[A] + P[B] – P[A,B] 
 

This formula applies to any two events, independent or not.  A and B can be basic product components, but they can also 
be cuts.  This formula can be used directly to calculate the probability of the entire set of cuts occurring which is the mission 
failure probability.  Furthermore, this approach can be generalized to any number of events (or cuts), although the 
calculations get cumbersome. For example: 
 
(2) P[A or B or C] = P[A] + P[B] + P[C] – P[A,B]– P[A,C]– P[B,C]+ P[A,B,C] 



 
And also: 
(3) P[A or B or C or D] = P[A] + P[B] + P[C] + P[C]  

– P[A,B]– P[A,C]– P[A,D]– P[B,C]– P[B,D]– P[C,D] 
+    P[A,B,C]– P[A,B,D]– P[A,C,D]– P[B.C,D] 
– P[A,B,C,D] 

 
 

Even with only four events one can see the complexity growing. The number of sets to evaluate approximately doubles 
for each new event added.  For the 21 cuts in our tricycle example, the number of set combinations that must be processed is 
2,097,151.  Although modern computers could easily handle the scope of that, it does not take too many more before even the 
most powerful computers will fail to manage the size of the calculation.  If our problem grows to 30 cuts, the number of sets 
to evaluate grows to 1,073,741,823 which will require 500 times more computer resources than when we had only 21 cuts. 

The good news is that most of these sets contribute very little to the final probability, albeit they occur in vast numbers. 
The second source of good news is that some cancellation occurs due to the oscillating sign in the expression.  This lends 
itself to approximate formulas that work well, provided one does not include supersets in the cutest itself, that is we use a min 
cut set.  One such approximation is to simply add the first order terms in the probability expression. If the failure rates are 
small, say 0.00001 or less, the higher order terms are orders of magnitude below the first order terms, and even thought they 
may exist in vast numbers, their cumulative effect is still dominated by the first order terms.  This greatly reduces the scope 
of the calculations. 

Another approximation which is a little better makes use of the following relationship: 
 
(4) P[A or B] ≈ P[A] + P[B] – P[A]*P[B].  
 

This becomes an equality rather than an approximation if A & B are independent, which is not necessarily the case since 
A & B are cuts that may share common components.  But since we are using a min cut set, A & B must contain some 
components that are unshared, thus driving down the size of the resulting probability, particularly for components with low 
failure rates. 
 
Now note that: 
 
 (5) P[A or B or C]=P[(A or B) or C] 

≈ P[A or B] + P[C] – P[A or B]*P[C].  
  = P[A or B] *(1-P[C]) + P[C].  
 

Lending itself to an iterative calculation that takes about the same effort as just adding the first order effects.  The result 
is shown at the top of table 3 as the mission TOP failure probability.  
 
FAULT TREE COMPLEXITIES 

 
One might question why the formula in equation 4 is not exact if applied hierarchically throughout the tree.  For 

example, if we looked at Steering branch (see figure 2) we would find a fairly simple structure.  This branch controls the 
steering.  Each gate and component in this branch is found in this branch only.   This exclusiveness results in a strictly 
hierarchical tree, and the entire substructure within the branch is probabilistically independent from any event outside the 
branch.  This means that equation (4) could be applied at each node, using only the cuts at that node, and getting an exact 
probability for that gate.  Furthermore, we can apply that probability to this gate and treat it as if it were another component.  
As we continue to move up the tree, we need not carry the baggage of the cuts at that point, but rather imagine the tree to be 
pruned at that branch, and treat the node name as a single component. 



Figure 2 
Steering Branch: Simple Hierarchy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This approach not only drastically reduces the complexity of the probability calculation, but it completely changes the 
notion of a min cut set. The min cuts at each node are formed from each of its direct children, viewing each as a component 
even for those that are gates.  But alas, life is usually not that nice.  The reason is that many nodes in most fault tree systems 
have multiple parents. This means that failure can move up the tree in more than one path. This changes the nature of the tree 
from a hierarchy to a network, and consequently greatly complicates the min cut set generation as well as the analysis.   

When failure can propagate up the tree in various pathways, the cuts themselves become more complex.  The same 
components now are now found in a variety of branches.  One can no longer rely on the cuts feeding a particular node, since 
they may overlap with cuts in a wholly different branch. The may also form cuts in one branch that are supersets of cuts in 
another and should be removed higher up in the tree. 

Figure 3 shows such an example in the rear wheel assembly. 

The “steering” branch is strictly hierarchical, that is every 
node in the branch has only one parent.  This results in 
each gate being independent of all other gates. Note that 
by displaying this branch alone, we are able to use 
standard fault tree symbols, as well as using better 
descriptions for each node, 



 
Figure 3 

Rear Wheel Branch: Network 
 

 
The rear axle in the “steering” branch is affects both rear wheel assemblies. Consequently the same basic event is 

shared between these two branches. 
In this case, neither the LEFT or RIGHT branches may be used as independent branches.  Cuts developed at either of 

these two nodes must be carried upward to the next higher node.  But at this point, the min cut sets can be resolved, and the 
node BACK can be treated as an independent branch for processing further up the tree. 

So in practice, if a fault tree algorithm is able to identify all independent branches, it can gain significant computation 
efficiency, both in CPU time and memory used.  
 
IMPORTANCE AND SENSITIVITY 
 

As a final topic we will entertain establishing the influence a single component has on the reliability of some system.  
Starting with the cuts and associated failure probabilities of table 3, one could and should ask how much change would occur 
to the total reliability if the failure rate of some component changed.  Or more drastically, what impact would there be if a 
component become perfectly reliable or completely unreliable?  

Multiple approaches exist addressing this.  One approach is to view the failure probability calculation as a reliability 
formula (actually unreliability) which varies as a function of the components’ failure rates. If one changed the failure rate by 
some amount, and compared this change to the resulting change in the failure probability, this comparison could be viewed as 
a slope. This slope is the change in failure probability per unit change in the failure rate.  It can be constructed by taking the 
partial derivative of the reliability formula with respect to each failure rate, resulting in a vector of we might call importance 
measures.  The larger the measure, the bigger influence that component’s reliability has on the mission reliability. Suppose 
we calculate this importance measure for each component. The components are then ranked in terms of their values is 
descending order. The components are then ranked. This ranking then provides a useful comparison of relative importance of 
the components in the system. 

Rear axle 
affects two 
gates 



 
Table3 

Min Cut Set for Tricycle Application 

 
 

OTHER FAULT TREE CONSIDERATIONS 
 

There are a variety of other key issues that we must leave for another day.  These issues are left not because of their 
relevance, but their complexity.  Below is a list of some of methods that are used in practice, but not discussed in this paper. 
 

• Up to this point, we have assumed that when a component fails, it stays failed.  But in practice, some systems allow 
for replacing or repairing components that fails, so long as the system has not yet failed.  Repairable systems are far 
more complex and are generally approximated or analyzed using Monte Carlo methods.   

• The k choose n gate allows a fixed number of child nodes to fail before the parent gate is considered failed.  
• Another gate called a sequential AND gate considers an AND gate to be failed only if the failure occurs in a 

particular order.   
• The concept of a “mission” cane be generalized using the notion of a time phased mission.  In a phased fault tree, 

the failure rates can change at certain block points where situations may incur greater stress on certain components 
producing higher risk. 

• Certain fault tree switches called houses can turn on and off particular branches as a function of the phase, allowing 
for tailoring the fault tree within the mission.   

• Often certain gates fail not only as a function of the cutsets, but as a function of a random, non-time oriented event. 
Such evens are often called inhibit conditions. These conditions are like houses, except they occur randomly.  The 
rate of occurrence can change from phase to phase.  

Importance measures & ranking allows 
the reliability engineer to focus on elements 
of the design which are sensitive to the 
overall system reliability.  It provides the 
basis for adding redundancy to a design or 
for focusing efforts on particular component 
that yield the greatest payback in quality.  
This then begs an issue with respect to joint 
coordination between Quality and 
Engineering departments, since the reliability 
can be a common denominator with which 
Engineering can effectively guide fruitful 
areas of quality improvement. 
 



CONCLUSION 
 

Fault Tree Analysis is one of many methods that can be used to evaluate and engineer reliability into a product or 
service.  Reliability methods can also provide a basis for handshaking with Quality departments, enabling a focus on fruitful 
quality investigation or improvement.  The methods surrounding Fault Tree Analysis are cause and effect in nature, with 
probabilistic models being the primary tool for quantifying the system reliability.  Such tools are powerful, opening the door 
to superior and more cost effective systems leading to customer satisfaction and trust. 
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